
12 
 

Chapter 1: Estimating fishing effort across the landscape: a spatially 
extensive approach using models to integrate multiple data sources 
 
Authors: Ashley Trudeau1, Colin J. Dassow2, Carolyn M. Iwicki1, Stuart E. Jones2, Greg G. 
Sass3, Christopher T. Solomon4, Brett T. van Poorten5, Olaf P. Jensen6 

1. Graduate Program in Ecology and Evolution, Rutgers University, Department of Marine 
and Coastal Sciences, 71 Dudley Rd. New Brunswick, NJ 08901 

2. Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 
3. Escanaba Lake Research Station, Office of Applied Science, Wisconsin Department of 

Natural Resources, 3110 Trout Lake Station Drive, Boulder Junction, WI 54512 
4. Cary Institute of Ecosystem Studies, Millbrook, NY 12545 
5. School of Resource and Environmental Management, Simon Fraser University, Burnaby, 

BC, Canada, VAS 1S6 
6. Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 

08901 
 

Abstract 

Measuring fishing effort is one important element for effective management of 

recreational fisheries. Traditional intensive angler intercept survey methods collect many 

observations on a few water bodies per year to produce highly accurate estimates of fishing 

effort. However, scaling up this approach to understand landscapes with many systems, such as 

lake districts, is problematic. In these situations, spatially extensive sampling might be preferable 

to the traditional intensive sampling method. Here we validate a model-based approach that uses 

a smaller number of observations collected using multiple methods from many fishing sites to 

estimate total fishing effort across a fisheries landscape. We distributed on-site and aerial 

observations of fishing effort across 44 lakes in Vilas County, Wisconsin and then used 

generalized linear mixed models (GLMMs) to account for seasonal and daily trends as well as 

lake-specific differences in mean fishing effort. Estimates of total summer fishing effort 

predicted by GLMMs were on average within 11% of those produced by traditional mean 

expansion. These estimates required less sampling effort per lake and can be produced for many 

more lakes per year. In spite of the higher uncertainty associated with model-based estimates 
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from fewer observations, the improvements associated with the addition of only three aerial 

observations per lake highlighted the potential for improved precision with relatively few 

additional observations. Thus, the combination of GLMMs and extensive data collection from 

multiple sources could be used to estimate fishing effort in regions where intensive data 

collection for all fishing sites is infeasible, such as lake-rich landscapes. By using these methods 

of extensive data collection and model-based analysis, managers can produce frequently updated 

assessments of system states, which are important in developing proactive and dynamic 

management policies.   

 

Introduction  

Recreational fisheries are widespread and socioeconomically important, with about 118 

million estimated participants in North America, Europe, and Oceania (Arlinghaus et al., 2015; 

Tufts et al., 2015). Inland and marine recreational fisheries are responsible for substantial 

removal of biomass, but in many systems, insufficient data are available to make proactive 

management decisions with the goal of maintaining sustainable harvest (Cooke and Cowx, 2004; 

Ihde et al., 2011). In addition, these fisheries are frequently open-access, leaving them 

particularly vulnerable to overfishing (Cooke and Cowx, 2004; Cox et al., 2002; Post and 

Parkinson, 2012). Anglers exhibit heterogeneous preferences, which leads them to adjust the 

location and intensity of their fishing effort in response to changing conditions. This complicates 

managers’ ability to predict fish population dynamics (Carruthers et al., 2018; Wilson et al., 

2020). Successful management of recreational fisheries therefore requires understanding fishing 

effort dynamics across different spatial and temporal scales.  
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Recreational fisheries are diverse in their spatial extent; their distribution across the 

landscape; and their availability of catch, effort, and harvest data (FAO, 2012; Kaemingk et al., 

2019). Different systems therefore rely on different methods for quantifying fishing effort 

dynamics, which can include intensive and/or extensive observations of water bodies or access 

points. The number of water bodies surveyed depends on the abundance of water bodies present 

in the region as well as the budget limitations of the managing agency (e.g. Cass-Calay and 

Schmidt, 2009; Chizinski et al., 2014; Malvestuto et al., 1978). Intensive data collection on 

relatively few locations permits more in-depth sampling of these locations over a wide range of 

conditions. For example, access point creel surveys assign clerks to select water bodies or access 

points for stratified-random shifts over much of the year. During these shifts, clerks interview 

anglers and collect instantaneous counts of angler effort (Newman et al., 1997; Pollock, 1994). 

For landscapes where water bodies are relatively scarce, intensive data collection satisfactorily 

balances costs of data collection with accuracy of fishing effort and catch rate estimates. 

However, intensive data collection regimens can also leave many water bodies with no available 

data describing fishing effort, catch rates or harvest (Post et al., 2002). Many fisheries landscapes 

could therefore benefit from extensive data collection, where fewer observations are collected 

per site, but more water bodies or access points are surveyed (Beard et al., 2011). Fisheries 

already applying these methods tend to rely on multiple data sources to find the right balance 

between collecting sufficient observations per site while also surveying as many sites as possible 

(e.g. Steffe et al., 2008). In contrast, many fisheries that have historically been classified as 

“small scale” are surveyed through intensive methods in spite of their large spatial extent and/or 

their high number of access points or fishing sites, such as lake districts (Deroba et al., 2007) and 

river systems (West and Gordon, 1994). The pool of harvesters within a recreational fisheries 
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landscape is mobile and heterogeneous, and their fishing effort dynamics cannot always be 

understood by treating small water bodies and fishing sites as independent fisheries (Matsumura 

et al., 2017; Martin et al., 2017). Many of these fisheries landscapes therefore benefit from a 

more extensive form of data collection and the integration of multiple data sources (e.g. 

Smallwood et al., 2012, Askey et al., 2018).  

Redistributing data collection to sample all water bodies or access points is not a trivial 

issue, particularly in lake-rich landscapes or for very large water bodies. For large water bodies 

with many access points, roving creel survey methods are used to cover more area (Roop et al., 

2018; West and Gordon, 1994). Additional extensive survey methods include the use of aerial 

surveys (Askey et al., 2018; Smucker et al., 2010), cameras (van Poorten et al., 2015), and 

vehicle counters (Simpson, 2018; van Poorten and Brydle, 2018), often in combination with 

intensive creel methods (Hartill et al., 2016; van Poorten and MacKenzie 2020). However, when 

adapting these mixed methods for a particular system, it will not always be possible to produce 

data compatible with design-based estimates of fishing effort. Traditional methods of estimating 

fishing effort rely on specific creel designs intended to accommodate variation in fishing effort 

by temporal strata, such as month or day of the week. Mean effort of a stratum is a mean of 

means: the mean of daily total effort means within the stratum (Newman et al., 1997). This mean 

expansion process leverages the central limit theorem to allow Gaussian error propagation to 

estimate confidence intervals around total fishing effort estimates (Särndal et al., 1978). 

Disparate systems use different creel designs to achieve this goal (e.g. Chizinski et al., 2014; 

Lockwood and Rakoczy, 2005; Smallwood et al., 2012), and they are difficult to adapt to non-

standard data from supplemental sources.  
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In contrast, model-based estimation of fishing effort can more easily accommodate 

multiple data sources and is flexible to system-specific sampling methods. An example of earlier 

model-based approaches includes a regression method predicting on-site estimates of total 

fishing effort from instantaneous observations collected by aerial surveys in British Columbia 

(Tredger, 1992). Askey et al. (2018) demonstrated that the previously employed regression 

method produced biased estimates and rigorously demonstrated the effectiveness of a 

generalized linear mixed model-based estimation approach using aerial surveys and on-site data 

collection from time-lapse cameras. Model-based approaches to estimating fishing effort across 

multiple fishing sites or water bodies are therefore not new methods, but they have generally 

been applied to test for differences in fishing effort dynamics among groups (Merten et al., 

2018), or to understand ecological and fishery influences on fish growth and productivity 

(Varkey et al., 2018). Similar models could instead be applied to extensively collected data from 

multiple sources to estimate waterbody-specific fishing effort over many potential fishing sites. 

 Despite the availability of multiple data sources for estimating fishing effort, it is not 

always feasible to survey all fishing sites across a landscape. Models used to estimate total 

fishing effort could therefore be extended to predict angling effort based on empirical 

relationships between fishing effort and abiotic and biotic lake variables. Studies of stated and 

revealed angler preferences have already identified lake characteristics that are particularly 

attractive to anglers. For example, large lakes that are easily accessible and present high-quality 

fishing opportunities are more likely to be chosen as angling sites (Hunt, 2005; Reed-Andersen 

et al., 2000; Hunt and Dyck, 2011). However, anglers have heterogeneous preferences, so it is 

not immediately clear whether these differences in characteristics among lakes may influence the 

overall distribution of angling effort (Beardmore et al., 2013; Breffle and Morey, 2000; Curtis 
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and Breen, 2016, Kane et al., 2020). Lake-specific predictors could include some of the many 

lake morphometric and landscape variables known to influence fishing effort either directly or 

indirectly through their influence on fish community composition and abundance. In a study 

estimating total harvest across Wisconsin, Embke et al. (2020) used generalized linear mixed 

models (GLMMs) with lake characteristics as predictors to estimate harvest on unobserved lakes. 

If lake characteristics as well as the confounding effects of weather, time of day, and seasonality 

are also consistent predictors of fishing effort among lakes (i.e. Deroba et al., 2007), at least 

coarse estimates of fishing effort at unobserved lakes can be produced based on observed lake 

characteristics.  

 We tested a model-based approach to estimating fishing effort using extensive data 

collected in Vilas County, Wisconsin. To accomplish this goal, we examined annual summer 

fishing effort predictions of GLMMs fit to three datasets. These datasets were collected using 

different methods that demonstrated tradeoffs between the number of observations per lake and 

the number of lakes surveyed (Table 1). One dataset was classified as intensive because it 

included many observations of fewer lakes per year. The second and third datasets were 

extensive because they contained fewer observations per lake, but many more lakes were 

surveyed each year. The third dataset additionally included aerial survey observations of the 

same lakes to test for the value of including a supplemental data source. We completed a series 

of tests using these datasets to address the following questions: 1) When fit to extensive data, can 

models detect annual, seasonal, and daily changes in fishing effort? 2) How do fishing effort 

estimates derived from extensive observations compare to those derived from intensive 

observations? 3) How well can models fit to extensive data predict total fishing effort on 
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unobserved lakes? 4) How can these model-based methods be applied to predict fishing effort 

across a fisheries landscape?  

Methods 

Study area 

All observations of angling effort took place in Vilas County, Wisconsin. Vilas County is 

part of the Northern Highlands Lake District (NHLD), a highly forested, lake-rich region known 

for its fishing tourism (Peterson et al., 2003). With increasing shoreline residential development 

and the continued effects of global climate change, the NHLD lake fisheries have shown marked 

changes in species composition and size structure (Christensen et al., 1996; Sass et al., 2006; G. 

J. A. Hansen et al., 2015; J. F. Hansen et al., 2015; Embke et al., 2019). The high density of lakes 

in this region means that intensive creel data are collected infrequently for each surveyed lake. If 

accurate estimates of fishing effort could instead be derived from extensive data collected over 

more lakes, managers’ understanding of effort dynamics at many lakes of interest could be 

updated more frequently. Vilas County has 1318 lakes, of which 175 have public access points 

maintained by the WDNR (Wisconsin Department of Natural Resources, 2009). Since 1995, the 

Wisconsin Department of Natural Resources (WDNR) has conducted intensive creel surveys on 

65 Vilas county lakes (Figure 1, Table 1). Intensive data collection on lakes inhabited by walleye 

(Sander vitreus) in the Ceded Territory (the northern third of Wisconsin) was initiated by the 

WDNR and the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) in 1987 after the 

US Seventh Circuit Court of Appeals affirmed the off-reservation hunting, fishing, and gathering 

rights of Ojibwe tribal members. The WDNR annually selects among all lakes containing 

walleye using a stratified random design to complete adult walleye population estimates, age-0 

walleye relative abundance surveys, and nine-month creel surveys. In addition, each year four 
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“trend” lakes are selected, which are sampled every three years, and most other lakes are 

surveyed about once every ten years (Cichosz, 2019). The data collected from these surveys are 

used to manage the joint tribal spearing and recreational angling fishery for walleye in the Ceded 

Territory of Wisconsin (Hansen et al., 1991).  

Data collection 

Intensive observations of instantaneous boat counts were collected by the WDNR during 

1995-2019 across 65 lakes using a stratified random survey design. On average, five Vilas 

County lakes were surveyed per year (Tables 1 and A1), and only lakes containing walleye were 

surveyed (Cichosz, 2019). Survey dates and times were stratified by month, weekend, and 

mornings and evenings. A creel clerk’s 40-hour workweek was randomly assigned to days and 

times based on these strata. In general, lakes were surveyed for nine months each and visited for 

about 20 creel shifts per month. November, March, and April were usually omitted from 

sampling due to perilous ice conditions. Instantaneous counts were completed at two randomly 

selected times during each shift. Creel clerks circled the lake by boat, counting the number of 

anglers that were either actively fishing or known to be moving between fishing locations 

(Gilbert et al., 2013; Rasmussen et al., 1998).  

For our extensive experimental creel survey, we completed on-site, instantaneous counts 

of fishing activity at 38 lakes in Vilas County, WI from mid-May to mid-August of 2018 and 

2019 (Figure 1, Supplementary Material A1). Sixty creel shifts in 2018 and 120 shifts in 2019 

were stratified by weekends and weekdays as well as by morning (5:30 to 13:30) and evening 

(13:30 to 21:30) shifts. We randomly assigned at least four of these shifts to each lake, with the 

restriction that each lake needed to be surveyed at least once on a weekend or holiday. In 

addition, morning and evening shifts were required to take place at each lake. During each creel 
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shift, we completed three instantaneous boat counts at randomly selected times. If randomly 

selected count times were less than one hour apart, count times were re-drawn until this criterion 

was met. If a count was selected to take place before sunrise or after dark, the count was instead 

completed at sunrise or sunset, respectively, and the new count time was recorded. On average, 

13 instantaneous counts were completed per lake during the 6 months total of experimental creel 

surveys from 2018 and 2019 (Tables A1 and A2). We completed on-site instantaneous counts of 

fishing effort from a boat, counting the number of fishing boats and shore anglers who were 

actively fishing at the count time. For each boat or shore angler observed, we recorded whether 

or not they were angling, the number of passengers, and whether the boats were moving or 

stationary. Because we counted fishing vessels while the intensive creel survey counted anglers, 

we converted the intensive raw counts to an approximate number of fishing boats based on the 

mean number of passengers per boat observed during our extensive on-site counts (µ=2.04, 

σ=0.95).  

In addition, we completed three aerial surveys of the same 38 lakes (plus 6 others) on 

June 6, July 10, and July 27, 2019. Flights were scheduled based on pilot availability and 

weather conditions. Volunteer pilots flew a pre-planned flight path in low-wing, single-engine 

aircraft. The pilot circled each of the target lakes at an altitude of 760 m while the counts took 

place. Two passengers were present for data collection: one identifying lakes and recording 

counts and the second locating and counting boats. When conditions allowed, we used binoculars 

to identify boats containing anglers. We could not always visually identify fishing boats, so 

unassigned stationary or slow-moving boats were therefore probabilistically classified as fishing 

or non-fishing based on the proportion of fishing boats among all stationary and slow-moving 

boats observed during on-site counts. We observed 62% of stationary boats and 80% of slow-
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moving boats to be fishing during our on-site counts, so each unassigned stationary and slow-

moving boat was randomly assigned a classification with a 0.62 or 0.80 probability, respectively, 

of being classified as a fishing boat.  

Traditional mean expansion estimates of fishing effort 

Mean expansion estimates of total fishing effort from intensive data compute the sum of 

mean fishing effort over several strata. Every month of observations makes up one level, and 

then each month is subdivided into weekday and weekend/holiday strata. Two counts of fishing 

effort were collected every shift, and these were averaged to estimate each day’s mean effort. 

Daily mean effort was multiplied by the number of daylight hours to estimate that day’s total 

boat hours. The mean of this daily mean total effort was then calculated separately by month and 

weekday strata, and the sum of these grand means estimated the lake year’s total fishing effort. 

The standard deviation (SD) of angler counts within a stratum was completed according to 

Rasmussen et al., (1998), and summer fishing effort SD for each lake was calculated as the 

square root of the summed variance of all strata. This protocol of mean expansion has been 

demonstrated to accurately estimate total annual fishing effort relative to a census count 

(Newman et al., 1997). We calculated fishing effort from intensive data only for summer months 

between May and August. Seven lakes were surveyed intensively and extensively on different 

years. This overlap allowed us to compare the accuracy and precision of mean-expansion total 

summer fishing effort estimates with our model-based estimates from extensive data.  

When fit to extensive data, can models detect annual, seasonal, and daily changes in fishing 

effort?  

We modeled instantaneous boat counts as a response to the effects of lake, year, day of 

year, and time of day using GLMMs. We tested the fit of different distributions to our count data 
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using the R package “fitdistrplus”(Delignette-Muller and Dutang, 2015) in R version 3.6.1 (R 

Core Team, 2019). Because the count data were overdispersed, we fit negative binomial 

regressions with a log link function. We used autocorrelation function (ACF) plots of 

standardized residuals to detect significant temporal autocorrelation. Random intercepts 

incorporated variation due to lake identity that was not accounted for in the explanatory variables 

(Zuur et al., 2009). By including random intercepts to accommodate lake-specific variation in 

fishing effort, we allowed the model to pool information across lakes in order to detect general 

patterns in seasonal and daily fishing effort dynamics. This model was then used to predict 

hourly instantaneous counts across a summer for each lake. The area under the curve of these 

predictions then provide estimates of annual summer fishing effort that can be compared to 

estimates obtained by mean expansion of intensive data. 

We used two datasets, the intensive WDNR observations and the extensive experimental 

data, and compared the ability of GLMMs to detect changes in fishing effort on three subsets of 

this data: (1) the intensive observations, (2) the extensive on-site observations, and (3) our 

combined extensive on-site and aerial survey observations. We completed forward model 

selection of a pre-specified set of increasingly specific predictors by comparing Akaike 

Information Criterion (AIC) of candidate models. We used a ΔAIC cutoff of -2 for selecting the 

best-fitting model. The simplest model consisted of only a random intercept by lake. We 

sequentially added in effects for year, day of year, and hour of day. Seasonality and time of day 

are already well known predictors of fishing effort (e.g. Mann and Mann-Lang, 2020; Powers 

and Anson, 2016). By completing forward-selection of nested models, we were able to compare 

the ability of different datasets to detect increasingly granular dynamics of fishing effort. For the 

models fit to intensive observations, the year effect was a second random intercept. For the two 
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extensive datasets conducted only over two years, we included a year fixed effect using a dummy 

variable. To aid convergence, all continuous predictor variables were centered and scaled. We fit 

these models using the lme4 package version 1.21 (Bates et al., 2015, p. 4). Validity of the 

models was assessed using the DHARMa package v.0.2.6 (Hartig, 2019), and marginal and 

conditional 𝑟ଶ were estimated using the trigamma method with the MuMIn package v.1.43.15 

(Barton, 2019). 

How do fishing effort estimates derived from extensive observations compare to those 

derived from intensive observations? 

Before comparing model-based to mean expansion predictions, we first validated that 

generalized linear models fit separately to each lake year of intensive data produced total fishing 

effort estimates comparable with those produced through mean expansion (Appendix A2, 

Figures A1 and A2, Tables A3 and A4). After this validation, we then tested the accuracy and 

precision of total summer fishing effort estimates derived from each of the candidate GLMMs fit 

in section 2.4. We compared predictions generated by each GLMM with the estimates calculated 

by mean expansion for the seven lakes surveyed in both datasets. Hourly predictions of 

instantaneous boat counts from May 1 to August 31 for these lakes were obtained by predicting 

boat counts at each daylight hour of each day. Continuous prediction variables were centered and 

scaled according to the mean and standard deviation of the original fit data. Predictions for all 

models and datasets were produced for all daylight hours of summer, conditional on a mean year 

effect using the merTools v.0.5.0 R package (Knowles and Frederick, 2019). The area under the 

curve of each lake’s summer predictions was then calculated using the trapezoidal rule, which 

produced an estimate of total summer fishing effort for each lake. By bootstrapping the model 

predictions for 5,000 iterations, we obtained a mean estimate of total fishing effort as well as 
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upper and lower 95% prediction intervals. This process was repeated for each of the candidate 

models. These prediction intervals of model-based estimates of fishing effort were then 

compared to fishing effort estimates calculated through mean expansion of intensive data. To 

summarize correspondence between predicted and observed fishing effort for each dataset and 

model, we compared indices of relative accuracy and precision (𝐼ோ and 𝐼ோ, defined below) of 

each model’s predicted total summer fishing effort versus expanded mean estimates as in Steffe 

et al. (2008). Some lakes were intensively surveyed over several years. For these lakes, we 

compared model-based total effort estimates to the mean of all years’ mean expansion estimates. 

The 𝐼ோ specifies the similarity of two estimates relative to the magnitude of the estimate of 

interest. A positive 𝐼ோ indicates that the model-based estimate is higher than that of the mean 

expansion by some proportion of its overall value, while a negative value indicates a lower 

estimate.  

 

𝐼ோ =
𝐺𝐿𝑀𝑀 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑀𝑒𝑎𝑛 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑀𝑒𝑎𝑛 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
× 100 

 

The 𝐼ோ describes the similarity of each estimates’ relative standard error (RSE) as a percentage 

of the RSE of the estimate of interest. A positive 𝐼ோ value indicates that the model-based 

estimate is more precise than that of the mean expansion, or in other words, its standard error is a 

smaller proportion of its estimate.  

 

𝑅𝑆𝐸 =
𝑆𝐸ா௦௧௧

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
× 100 
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𝐼ோ =
𝑅𝑆𝐸ெ ௫௦ − 𝑅𝑆𝐸ீெெ ௦௧௧

𝑅𝑆𝐸ெ ௫௦
× 100 

 

Mean 𝐼ோ and 𝐼ோ were then calculated for all lakes surveyed intensively and extensively.  

How well can models fit to extensive data predict total fishing effort on unobserved lakes?  

We chose the most accurate predictive model from section 2.5 and added covariates 

describing lake characteristics. We chose variables representing landscape predictors of boating 

density as described by Hunt et al. (2019). Hunt et al. (2019) modeled the distribution of boating 

activity in Ontario, Canada as a function of lake surface area, accessibility, human development, 

and fishing quality. We restricted ourselves to data that were easily obtained for all lakes in a 

fisheries landscape. Lake surface area is a well-established predictor of fishing effort (e.g. Hunt, 

2005), and it is available for all Wisconsin lakes. We also had access to lake-specific availability 

of public boat ramps and presence of walleye, a popular target species. Each of these variables 

were obtained from the WDNR lake database. Distance from a resident pool of anglers, either 

from a nearby urban center or from lake residents, has also been demonstrated to predict fishing 

effort (Hunt et al., 2011; Wilson et al., 2020). However, given the low and relatively 

homogeneous population density of Vilas County (Peterson et al., 2003; U.S. Census Bureau, 

2010), we judged housing density of the lakeshore to be a more influential source of nearby 

anglers. We calculated building density (buildings per km shoreline) within 200 m of each lake’s 

shoreline using GIS data obtained from the WDNR and Vilas County. As an additional measure 

of accessibility, distance to the nearest secondary road was calculated as Euclidean distance from 

the centroid of a lake to the closest point of the road. Latitude and longitude of each lake was 

obtained from the WDNR 24K Hydro Geodatabase (“24K Hydro Full Geodatabase for 

Download,” 2017), and road data came from the United States Geological Survey National 
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Transportation Dataset for Wisconsin (“USGS National Transportation Dataset Downloadable 

Data Collection,” 2017). Continuous variables were scaled and centered. These models were fit 

as described in section 2.4, and p-values were estimated based on Wald tests with the null 

hypothesis that the predictors have no effect on fishing effort and an alpha=0.05. 

Models’ ability to predict total effort on unobserved lakes was tested using leave-one-

group-out (LOGO) cross validation for models fit to intensive and extensive datasets. All 

observations from each lake were iteratively removed from the dataset, the models were refit, 

and the missing values predicted. These predictions were bootstrapped for 5000 iterations to 

obtain upper and lower 95% prediction intervals for the effort estimates. The 𝐼ோ and 𝐼ோ of these 

estimates were then estimated relative to those produced by mean expansion of intensive data.    

How can these methods be applied to predict fishing effort across a fisheries landscape?  

 The best-performing predictive GLMM was used to estimate total summer fishing effort 

across all lakes and years surveyed either intensively or extensively in Vilas County. We fit the 

model to the combined intensive and extensive datasets, including random lake and year effects 

and fixed effects of weekend, day of year, and a dummy variable indicating the survey method. 

A full summer of fishing effort was then predicted for each lake over each year represented in 

the full combined dataset. We obtained 95% prediction intervals by bootstrapping the model 

predictions for 5000 iterations. Predictions were completed for 100 lakes over 25 years.   

Results 

When fit to extensive data, models detect presence and shape of annual, seasonal, and daily 

changes in fishing effort, but underestimate their magnitude. 

The best-fit models included a year effect and quadratic effects of day of year and hour of 

day, which suggests that seasonal and daily patterns of fishing effort were detected by models fit 
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even with few observations per lake (Table 2). The quadratic effect of time of day was the best 

fitting of all of the functional forms tested for this variable (Tables A5-A7). Weekends and 

holidays had a consistently positive effect on fishing effort for all datasets. However, the models 

fit to the intensive dataset were the only models to detect significant quadratic effects of day of 

year and hour of day on fishing effort (Tables A8-A10). Therefore, while including annual, daily, 

and hourly effects improved model fit for all of the data sets, it was only the annual and weekend 

effects that were detectable in the models fit to extensive data. Fixed effects such as day of year, 

weekend/weekday, and hour of day, explained very little variance in fishing effort (Table 3). 

Although lake and year random effects consistently explained around 40% of the variance in 

fishing effort, marginal 𝑟ଶ values for hourly and daily fixed effects were very low, indicating that 

they explained < 5% of the variance in instantaneous fishing effort.  

Models fit to extensive data produce similar estimates to mean expansion of intensive data, 

with some reduction in accuracy and precision.   

With the exception of Irving Lake (IV), all models fit to the extensive data produced 

fishing effort estimates with prediction intervals that overlapped with those produced by mean 

expansion of intensive data (Figure 2). These models all produced mean estimates of fishing 

effort within 20% of the value of those produced by mean expansion of intensive data (Table 4). 

The best performing model for the extensive dataset, which included day of year and weekend 

fixed effects, produced estimates that were, on average, within 11% of the mean expansion 

estimate. As expected, when the models were fit to intensive data, they produced estimates of 

fishing effort that were nearly identical to those produced by mean expansion (Table 4, Figure 

2). 
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On an individual lake basis, the effects on accuracy of increasing model complexity were 

relatively subtle and depended on lake identity. Fishing effort on Irving Lake (IV), for example, 

was continuously underestimated by all models fit to extensive data. Estimates for Little Arbor 

Vitae Lake (LV), however, were quite accurate for simple models but became more negatively 

biased as more parameters were added. Note the differences in total fishing effort predictions for 

this lake between Figures 2A and 2D. The addition of aerial survey data tended to marginally 

improve the mean accuracy of predictions for all lakes. More notably, aerial survey data on 

average improved the precision of fishing effort estimates as measured by IRP (Table 4). 

Prediction intervals of model estimates based only on on-site extensive observations tended to 

be, on average, 7 to 10 times wider than the confidence intervals associated with mean 

expansion. Adding only 3 aerial observations per lake reduced the average width of estimate 

prediction intervals by nearly half. This improvement in precision suggests that a moderate 

number of additional samples could result in a substantial reduction in uncertainty associated 

with these estimates of fishing effort. An exaggerated version of this change can be seen in the 

predictions for Oxbow Lake (OB), on which fewer on-site observations were recorded. When 

three aerial observations were added for this lake, the span of the estimate’s prediction interval 

decreased from a width of 16,147 boat hours to 7,724 boat hours, or over 50% (Figure 2C). 

Intensive and extensive datasets were collected on different years, potentially limiting our 

ability to compare estimates of fishing effort. To investigate the influence of year effects on our 

estimates, we calculated estimates of total fishing effort for each year surveyed using our best-

performing model. Fishing effort estimates varied substantially between years, especially for 

Little Arbor Vitae and Oxbow lakes (Figure 3). These two lakes had produced the least accurate 

model-based predictions conditional on a mean year effect, but for each of these lakes, the total 
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effort prediction produced for one year was substantially closer to the mean expansion estimates. 

Much of the difference between mean expansion and model-based fishing effort estimates could 

therefore be a result of the mismatch in years between intensive and extensive sampling.  

Model-based predictions of fishing effort on out-of-sample lakes showed mixed 

performance. 

Predicting fishing effort for specific unobserved lakes required adding covariates 

describing lake characteristics that may influence fishing effort. Adding these lake variables 

caused marked changes to the model’s conditional and marginal 𝑟ଶ values (Table 5). Although 

the fixed effects in GLMMs predicting fishing effort from year, seasonal, and daily effects 

explained only around 5% of the variance in fishing effort, fixed effects in models containing 

lake variables explained between 20 and 30%. Because these lake variables took over some of 

the explanatory ability previously held by the random effects, these models could predict at least 

a portion of the variation in out-of-sample lakes, i.e. lakes without their own random intercept.   

The effect size and significance of these lake variables depended on the dataset to which 

the model was fit (Table 5). Lake area had a significant positive effect on instantaneous fishing 

effort in models fit to all three datasets. Distance from lake to the nearest secondary road had no 

significant effect in any models. In the model fit to intensive data, all lake variables with the 

exception of distance to road and walleye presence have a significant effect on fishing effort. In 

the model fit to extensive data, however, lake area and walleye presence were the only 

significant predictors.  

The accuracy of the total fishing effort predictions produced during LOGO cross 

validation were mixed (Figure 4). On average, the model fit to the extensive dataset containing 

aerial survey data produced estimates of fishing effort within 11% of those produced by mean 
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expansion (Table 6). However, this small IRA value was largely due to the very high predictions 

for Black Oak Lake (BK) and the very low predictions for Little Arbor Vitae (LV) offsetting 

each other. Model-based predictions of fishing effort were similar to the mean expansion 

estimates for Irving (IV), Birch (BH), Oxbow (OB), and White Birch (WB) lakes. However, this 

model produced much less accurate predictions for Allequash (AQ), Black Oak, and Little Arbor 

Vitae lakes. These results could have stemmed from two problems: 1) no lake-specific random 

intercept was available for the out-of-sample lakes, or 2) the selected lake variables were 

inconsistent predictors of fishing effort. 

To evaluate these two options, the LOGO cross validation process was repeated while 

retaining the aerial survey observations for the “out-of-sample” lake. This process simulated the 

scenario of predicting fishing effort based on limited observations as well as lake variable 

predictors. Retaining these observations, however, did not substantially improve the predictions 

of total fishing effort (Figure S4). The models fit to the intensive dataset had to be simplified due 

to an upper limit on computation time. Rather than including both year and daily covariates, the 

model included only a year random effect, in addition to the lake random effect and lake 

characteristics that were included in the other models. Out-of-sample predictions of models fit to 

intensive data tended to reflect those produced by extensive data, with the exception of Irving 

Lake (IV), where these predictions were much closer to the mean expansion value.   

Model-based methods can integrate multiple data sources to predict fishing effort across a 

fisheries landscape. 

 By fitting a GLMM to the combined intensive and extensive datasets, we could fit a 

random intercept to each lake and year surveyed and then predict total summer fishing effort 

across all lakes for each of the years represented in the datasets. Average hourly fishing effort is 
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highly heterogeneous across the county (Figure 5A, Table S11). Several lakes stood out as 

having exceptionally high mean hourly fishing effort. For example, Lac Vieux Desert and Little 

Saint Germain Lake had 603% and 518% higher effort, respectively, than the mean. In addition, 

while fishing effort varied by year, no trend in overall fishing effort was evident (Figure 5B). 

Fishing effort in 1995, however, was very high compared to other years.  

Discussion 

 Extensive data collection from multiple data sources is an effective tool for managers to 

understand fishing effort dynamics across a fisheries landscape. A model-based approach to 

analyzing this data allows managers to leverage multiple sources of extensive fishing effort data 

available within their system. By relying on extensively collected data, managers can estimate 

total fishing effort for many more fishing sites or water bodies than would be possible under an 

intensive sampling regimen. Further coverage of fisheries landscapes by spatially extensive 

approaches could be achieved through supplemental data sources such as aerial surveys, camera 

traps, and drones. With further understanding of predictors of lake use, out-of-sample estimates 

of fishing effort can further improve landscape coverage.  

Evaluating the success of extensive data collection for model-based estimates 

On average within the seven lakes evaluated, a model incorporating the effects of lake 

identity, year, day of year, and weekends predicted total summer fishing effort estimate values 

within 11% of the value of those obtained by mean expansion. Because the extensive dataset 

contained fewer observations per lake, some reduction in accuracy was expected. Further, the 

intensive and extensive observations took place on different years. We therefore remain 

encouraged that estimation methods using much less data produced similar results to data-rich 

mean expansion. Mean differences in accuracy among the seven lakes surveyed intensively and 
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extensively were primarily driven by a tendency to underestimate fishing effort on Irving and 

Little Arbor Vitae lakes and to overestimate fishing effort on Oxbow Lake. The underestimation 

of fishing effort for Irving Lake highlighted an important consideration for the use of extensively 

collected data. By chance, two out of four of our experimental creel survey shifts at this lake 

took place during inclement weather. As a result, the mean instantaneous boat counts collected 

for this site were not representative of typical fishing effort, and these predictions showed no 

overlap of prediction intervals with those of mean expansion. When fishing effort estimates were 

based only on aerial survey data, which by necessity took place during fair weather, predictions 

of a simple GLMM were very similar to those of mean expansion of intensive data (Figure S3). 

The effects of poor weather could be accounted for in future applications by including a 

covariate for severe weather effects in the GLMM. Weather conditions did not obviously 

influence observations on Little Arbor Vitae, but a higher variation in total annual effort for this 

large, busy lake may have contributed to the reduced accuracy and precision of its model-based 

total fishing effort estimates.  

Oxbow Lake produced fishing effort estimates with extremely wide prediction intervals. 

Only 6 instantaneous counts of fishing effort (3 on-site, 3 aerial) took place on this lake, less than 

half the number of observations collected for other lakes, which likely explains the discrepancy 

in total effort estimates. Although it was only possible to evaluate predictions for a small number 

of lakes, these examples demonstrate some of the strengths and limitations of our spatially 

extensive, model-based method. An extensive data collection scheme can produce reasonably 

accurate estimates of total fishing effort, but lake specific fishery characteristics and chance 

conditions during the survey will influence the optimal distribution of observations. 
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Our results highlight the tradeoffs that managers face in designing surveys to estimate 

lake-specific fishing effort. For landscapes where potential fishing sites are numerous, 

conducting extensive rather than intensive surveys may allow improved understanding of fishery 

dynamics across a broader scale. If, for example, an agency is limited to 500 observations for 

one summer, there are tradeoffs to consider when deciding how many lakes over which to spread 

those observations. These data could be used to obtain a highly accurate estimate for three lakes 

by following the traditional mean expansion protocol. In this case, each of the three lakes would 

be surveyed on 80 days of the summer with 2 instantaneous boat counts on each day (i.e., 3 lakes 

x 80 days x 2 observations per day = 480 observations). Alternatively, the agency could survey 

31 lakes, spending 8 days surveying each one and completing two instantaneous fishing effort 

counts per day (i.e. 31 lakes x 8 days x 2 observations per day = 496 observations). Based on our 

results, transitioning from an intensive sampling regime to extensive sampling should result in, 

on average, a 3x increase in the width of the prediction intervals, but, in this example, a more 

than order of magnitude increase in the total number of lakes for which effort estimates are 

available. The acceptability of these tradeoffs in accuracy and precision associated with greater 

water body coverage will depend on the management priorities for the region in question.  

Some limitations exist in our ability to compare our estimates of fishing effort from 

extensive data collection to traditional mean expansion of intensive data. When evaluating the 

accuracy of model-based total fishing effort predictions, we compared prediction intervals for an 

average survey year with the confidence intervals of the expanded mean total effort calculations. 

There was no way to account for the effect of the year of the intensive survey when calculating 

indices of relative abundance and precision, and year effects appear to be the reason for much of 

the difference in total fishing effort estimates. An additional design-related limitation is the 
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relatively small number of lakes available for comparison of model-based with mean-expansion 

total effort estimates. Our summary statistics of 𝐼ோ and 𝐼ோ generalize the accuracy and 

precision of estimates within the seven lakes surveyed intensively and extensively, but we have 

no way of knowing the accuracy and precision of total fishing effort estimates for the other 31 

lakes that were extensively surveyed. We can, however, compare our methods and results with 

those of Askey et al. (2018). Askey et al. (2018) rigorously validated the use of GLMM-based 

estimates of fishing effort with different sample sizes selected from a large dataset collected by 

aerial surveys and time-lapse cameras. The smallest sample sizes tested in their article were 10 

and 20 observations. Within our limited selection of lakes with extensive and intensive data 

available, we found similar mean percent inaccuracies for our total effort estimates.  

Opportunities for further landscape coverage 

Total fishing effort estimates can be improved by integrating supplemental data sources, 

such as aerial surveys. By including only three additional aerial observations per lake, we 

substantially improved the accuracy and precision of our estimates. Even without including on-

site observations, a small number of aerial observations per lake produced reasonably accurate, if 

coarse, estimates of total fishing effort (Figure S3). Aerial surveys are ideal for measuring the 

distribution of fishing effort across many lakes. This method is particularly useful for surveying 

fisheries with a large spatial extent, such as lake districts (Askey et al., 2018; Hunt et al., 2019; 

Tredger, 1992), major river systems, (Sindt, 2012) and marine and Great Lakes fisheries 

(Lockwood and Rakoczy, 2005; Zellmer et al., 2018). Despite its strengths, this method may be 

too expensive to implement consistently in many fisheries systems and can be limited by severe 

weather conditions.  
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Traffic counters and boat launch cameras have also been used to quantify fishing effort 

and boat traffic (Hunt and Dyck, 2011; Simpson, 2018; van Poorten et al., 2015; van Poorten and 

Brydle, 2018). These methods can passively collect effort data without the need for creel clerks, 

but cameras and counters are still expensive and prone to vandalism (van Poorten et al., 2015). 

The use of drones in fisheries science has been advocated (Kopaska, 2014), and they have been 

successfully used for identifying derelict or illegal fishing gear (Bloom et al., 2019), counting 

fish in shallow rivers (Tyler et al., 2018), and monitoring marine protected areas (Miller et al., 

2013). Privacy concerns and aviation laws, however, complicate their use in monitoring angling 

activity for inland fisheries (Duncan, 2016; Lally et al., 2019). Although each of these methods 

has costs and benefits, they are all potentially fruitful supplemental data sources for model-based 

estimates of angler effort for different fishery systems.  

As we demonstrated, fishing effort data collected through an extensive sampling scheme 

from multiple sources can be used to understand differences in fishing effort across a broad 

spatial and temporal scale. Through two years of extensive data collection using on-site and 

aerial observations, we added coverage of 44 lakes to the combined intensive and extensive 

fishing effort dataset describing Vilas County. Based on the year effects estimated from 25 years 

of intensive data, we were able to predict total fishing effort for all lake-year combinations. 

Although the empirical data does not exist to validate these estimates, this analysis remains a 

useful demonstration for the potential of extensive data collection and GLMM-based analysis for 

estimating fishing effort across a lake-rich landscape. Further annual extensive data collection 

would quickly expand this coverage, as well as allow for the direct comparison of fishing effort 

between years on a broader scale. These data also have promise for detecting seasonal and daily 
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patterns in fishing effort, which can assist fisheries managers in choosing optimal times for 

management interventions.  

As we found, however, a granular understanding of shifts in angler effort dynamics 

requires more data than we collected in our extensive sampling scheme. By allowing partial 

pooling of observations between lakes using lake random intercepts, some generalizable patterns 

were observed, but more observations per year may be needed to estimate the magnitude of 

seasonal and daily effects. Alternatively, different lakes may have different diel and seasonal 

fishing effort patterns. Although the extensive creel survey included fewer lakes than the 

intensive survey, a wider variety of lakes were surveyed, including lakes with no walleye 

population, no boat ramp, and lakes with smaller surface areas. Because of this greater variation 

in lake characteristics, concurrent differences in diel and seasonal fishing effort patterns may 

have been washed out to non-significance when the GLMMs were fit. In this case, more 

intensive data collection with more observations per lake may be required to understand lake-

specific seasonal and daily patterns. A hypothetical fisheries manager is therefore left to decide 

whether their goals are best served by investing their limited resources in extensive data 

collection over a wider spatial extent or intensive data collection within a limited number of 

systems.  

This question of appropriate tradeoffs could be sidestepped if managers could effectively 

predict fishing effort for unobserved lakes based on lake characteristics. We attempted to predict 

unobserved fishing effort using easily obtained data, with mixed results. Model predictions 

overlapped with mean expansion estimates for five out of the seven lakes tested, but total fishing 

effort for the other two were substantially over- or underestimated. Lakes associated with 

inaccurate predictions did not have any obvious characteristics in common that could explain this 
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discrepancy. These results could be explained by our use of only easily obtained predictor 

variables, or they could be an indication that lake characteristics are not consistent, linear 

predictors of lake-specific fishing effort. We chose lake variables that aligned with 

characteristics found to predict recreational boating density by Hunt et al. (2019), including lake 

surface area, walleye presence, and indices of human development and accessibility. Differences 

in sampling frame between our intensive and extensive data collection resulted in differences in 

parameter values between models fit to different datasets. For example, intensive data collection 

in Wisconsin takes place only on lakes containing walleye. Because no contrast was available for 

this parameter, no walleye effect could be tested. In summer, walleye are also almost exclusively 

available to boat anglers, potentially explaining the presence of a boat ramp effect in the 

intensive but not the extensive dataset. Distance to secondary road had no effect on instantaneous 

fishing effort in any dataset. Most likely, this result stems from measuring distance to road from 

the centroid of each lake. This metric does not account for the location of boat launches, so the 

nearest secondary road as measured here may still be inconveniently far away from any access 

points. Potential explanations for the absence of a building density effect in the extensive data 

are less clear. The lakes surveyed for both datasets had a similar range in building density values 

(0-70 buildings per km in the intensive data and 0-80 buildings in the extensive data). It is 

possible that, similar to diel and seasonal patterns, housing density has a different effect on 

fishing effort for different lakes. Not all lake residents are interested in fishing, and the presence 

of some building types such as resorts may be a better predictor of resident fishing effort than the 

presence of family homes. 

Indicators of fishing quality such as angler catch rates or fish population estimates, rather 

than indirect measurements of accessibility, may improve the predictive ability of these models, 
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but these data are labor-intensive to produce and therefore did not exist for every lake in our 

extensive dataset. By applying model-based fishing effort predictions over every lake- year 

combination in the combined intensive and extensive datasets, we identified a handful of 

extremely high fishing effort lakes, which allowed us to explore potential commonalities 

between them. The primary characteristic these lakes had in common was their surface area; the 

lakes with highest mean fishing effort ranged from 350 to over 1600 ha in surface area (Table 

S11). In contrast, no obvious correlation was found between fishing effort and population 

abundance or catch rates of popular target species. However, very high fishing effort lakes all 

tended to have moderate, rather than high or low, catch rates for panfish and muskellunge 

(Figures A5-A8). Most likely, predicting fishing effort based on lake characteristics would 

require accounting for nonlinear responses and interactions of lake characteristics, potentially 

using nonparametric methods such as random forests (e.g. van Poorten et al, 2013). Although 

out-of-sample predictions of fishing effort were not consistently accurate, we argue that 

extensive data collection for GLMM-based estimates of total fishing effort is a promising 

approach for understanding effort dynamics in highly distributed and/or data poor fisheries. 

Applications to fisheries management 

Our modeling approach proved effective for predicting angler effort across a fisheries 

landscape; however, other metrics derived from traditional angler intercept surveys, such as 

angler catch rates and estimates of total catch, are also important for fisheries management.  That 

said, our approach could compliment existing efforts to address these important, additional 

aspects of fisheries. For example, recent research by Embke et al., (2020) used GLMMs to 

produce recreational harvest estimates for 267 lakes that were surveyed intensively as well as all 

unobserved inland lakes across Wisconsin based on abiotic variables and an angler access metric. 
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Coarse estimates of fishing effort based on spatially extensive observations could further refine 

harvest estimates on these otherwise unobserved lakes. Additional catch and harvest data can 

also be collected during spatially extensive sampling of fishing effort through angler intercept 

interviews (Iwicki et al., in prep). Perhaps most importantly, the different levels of variability 

associated with fishing effort and harvest estimates based on extensively collected data can 

identify lakes of greater uncertainty where additional sampling resources should be directed. For 

example, high-effort and high-variance lakes such as Little Arbor Vitae likely need to be 

allocated more sampling effort than lakes such as White Birch (Fig. 3).  

In addition to its applicability to data-poor fisheries, a model-based approach to 

generating fishing effort estimates from fewer observations at more fishing sites could be a 

practical tool for managers who want to implement ecosystem-based management strategies that 

can respond to fast and slow changes across a fisheries landscape (sensu Walker et al., 2012). A 

transition from a one-size-fits-all management policy to a more diverse set of policies may 

contribute to a more persistent and resilient fisheries system (Carpenter and Brock, 2004; van 

Poorten and Camp, 2019). These policies would ideally be dynamic across space and time, 

which requires faster feedback from data collection describing how interventions have affected 

fishing effort, catch, and harvest. Although implementing highly dynamic and lake-specific 

policies is probably an unrealistic goal in lake-rich fisheries, tailored management of different 

categories of lakes may simultaneously improve system resilience and angler satisfaction by 

accommodating the preferences of heterogeneous groups of anglers. Strategic collection of 

fishing effort data over many lakes may therefore be an effective bridge between one-size-fits all 

policy and model-based implementation of diverse and dynamic policies.  
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Tables 

Table 1: Characteristics of the three datasets we evaluated when estimating lake-specific total 
fishing effort.  

 Intensive dataset Extensive dataset 
Extensive dataset 
with aerial surveys 

Sampling methods On-site observations On-site observations On-site observations 
Aerial surveys 

Number of years 
surveyed 

25 2 2 

Number of lakes 
surveyed 

65 38 44 

Mean number of 
lakes surveyed per 
year (SD) 

4.9 (2.6) 21 (7.1) 29.5 (19.1) 
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Table 2: AIC values for each model fit to each dataset. Each model contains its listed 
predictors as well as all predictors listed for the models above it. Values for ΔAIC are the 
difference between that model’s AIC and that of the model containing only a random lake 
effect. The best fit model for all datasets is in bold. 

Model Intensive data On-site extensive data 
On-site and aerial 
survey extensive data 

 AIC ΔAIC AIC ΔAIC AIC ΔAIC 
 (1|𝐿𝑎𝑘𝑒) 90206  1360.1  1725.8  
 + 𝑌𝑒𝑎𝑟 89883 -323 1350.2 -9.9 1713.3 -12.5 
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

88766 -1440 1346.6 -13.5 1708.5 -17.3 

+ 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚
+ 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚𝟐 

87948 -2258 1338.9 -21.2 1700.0 -25.8 
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Table 3: Marginal and conditional 𝑟ଶ values for each model fit to each dataset. Each model 
contains its listed predictors as well as all predictors listed for the models above it.  

Model Intensive data On-site extensive data 
On-site and aerial 
extensive data 

 Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

 (1|𝐿𝑎𝑘𝑒)  0.36  0.38  0.39 
 + 𝑌𝑒𝑎𝑟  0.39 0.035 0.46 0.021 0.43 
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

0.023 0.43 0.047 0.50 0.031 0.45 

 
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

0.044 0.46 0.065 0.52 0.044 0.46 
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Table 4: Mean indices of accuracy and precision for model-based estimates of total summer 
fishing boat hours relative to mean expansion estimates. (N=7) Each model contains its listed 
predictors as well as all predictors listed for the models above it.  

Model Intensive data On-site extensive data 
On-site and aerial 
extensive data 

 Mean 
𝐼ோ(SD) 

Mean 𝐼ோ 
(SD) 

Mean 
𝐼ோ(SD) 

Mean 𝐼ோ 
(SD) 

Mean 
𝐼ோ(SD) 

Mean 𝐼ோ 
(SD) 

 (1|𝐿𝑎𝑘𝑒) 8.06 
(6.48) 

73.95 
(5.51) 

-5.50 
(43.68) 

-48.82 
(61.24) 

1.93 
(42.57) 

-7.67 
(25.70) 

 + 𝑌𝑒𝑎𝑟 4.80 
(12.03) 

67.27 
(7.44) 

18.28 
(58.46) 

-51.57 
(63.67) 

11.98 
(48.60) 

-9.15 
(25.46) 

+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

-0.91 
(11.73) 

67.67 
(7.24) 

-8.13 
(51.55) 

-72.46 
(67.02) 

-10.86 
(39.35) 

-23.25 
(24.22) 

 
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

-4.58 
(12.35) 

69.79 
(8.93) 

-11.31 
(46.68) 

-74.82 
(61.75) 

-13.71 
(36.11) 

-26.86 
(24.88) 
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Table 5: Parameters of a GLMM predicting fishing effort from seasonality and lake variables 
as fit to each dataset. Parameters with significant effects are in bold.  

Model parameters Intensive data On-site extensive data 
On-site and aerial 
extensive data 

 Coefficient 
(SE) 

P value Coefficient 
(SE) 

P value Coefficient 
(SE) 

P value 

Intercept 
-0.66 (0.55) 0.23 -1.51 

(0.39) 
0.0001 -1.35 

(0.31) 
<0.0001 

Lake area (ha) 0.56 (0.12) <0.0001 0.47 (0.13) 0.0002 0.50 (0.10) <0.0001 
Building density 0.25 (0.10) 0.01 0.09 (0.13) 0.50 0.06 (0.10) 0.55 
Boat ramp present 0.71 (0.22) 0.001 0.14 (0.42) 0.74 0.19 (0.33) 0.56 
Walleye present 0.72 (0.54) 0.18 1.40 (0.34) <0.0001 1.23 (0.26) <0.0001 

Distance to road 
-0.02 (0.09) 0.78 -0.06 

(0.11) 
0.61 -0.10 

(0.09) 
0.25 

Year 2018   
-0.25 
(0.09) 

0.006 -0.21 
(0.06) 

0.0009 

Day of year 1.21 (0.09) <0.0001 1.06 (0.78) 0.17 0.75 (0.58) 0.27 

Day of year2 -1.22 (0.09) <0.0001 
-1.13 
(0.77) 

0.14 -0.85 
(0.67) 

0.21 

Weekend 0.47 (0.01) <0.0001 0.21 (0.11) 0.05 0.18 (0.09) 0.04 
Marginal 𝑟ଶ 0.23 0.26 0.28 
Conditional 𝑟ଶ 0.43 0.34 0.35 
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Table 6: Mean indices of relative accuracy and precision of out-of-sample model predictions 
relative to mean expansion estimates of intensive data. (N=7) 

Model Intensive data 
On-site extensive 
data 

On-site and aerial 
extensive data 

 Mean 
𝐼ோ(SD) 

Mean 𝐼ோ 
(SD) 

Mean 
𝐼ோ(SD) 

Mean 𝐼ோ 
(SD) 

Mean 
𝐼ோ(SD) 

Mean 𝐼ோ 
(SD) 

(1|𝐿𝑎𝑘𝑒) + 𝑌𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑
+  𝐿𝑎𝑘𝑒 𝑎𝑟𝑒𝑎
+ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
+ 𝐵𝑜𝑎𝑡 𝑟𝑎𝑚𝑝
+ 𝑊𝑎𝑙𝑙𝑒𝑦𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒
+ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑟𝑜𝑎𝑑 

-26.17 
(76.46) 

987.31 
(400.09) 

-16.16 
(64.71) 

42.28 
(63.90) 

-10.66 
(58.99)  

88.11 
(76.00) 
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Figures 

 

 

 

Figure 1: Map of Vilas County, WI showing location of lakes intensively surveyed by WDNR (green), 
extensively surveyed by our experimental creel survey (blue), and surveyed by both (red). 
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Figure 2: Comparison of total summer fishing effort estimates between mean expansion (black), and area 
under the curve of GLMM predictions fit to extensive data (colors). Parameters added to each model are 
indicated by the labels on the right. Points are mean estimates, and bars show 95% prediction intervals. 
Lakes that were intensively surveyed multiple years by the WDNR have multiple estimates depicted along 
with their 95% prediction intervals. 
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Figure 3: Total summer fishing effort estimates from mean expansion (black) and GLMM predictions  
incorporating lake, year, day of year, and weekend effects (colors) for every year the lake was surveyed. 
GLMM predictions from extensive data were always produced for the summers of 2018 and 2019, and 
mean-expansion estimates and GLMM predictions from intensive data are depicted for the years 
intensively surveyed. Points are mean estimates for each year observed by the dataset, and bars show 
95% prediction intervals.  
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Figure 4: Out-of-sample total summer fishing effort predictions for lakes that were surveyed both 
extensively and intensively. Lakes that were intensively surveyed multiple years by the WDNR have 
multiple estimates depicted along with their 95% prediction intervals.  Estimates were predicted based on 
lake characteristics, seasonality, and the grand mean random lake intercept through LOGO cross 
validation.  
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Figure 5: Lake-specific values of the random intercept for each of the 100 lakes surveyed either 
intensively or extensively in Vilas County, WI (A), and a time series of total annual summer fishing effort 
across each of these lakes for every year of observations (B). 
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Supplementary materials 
 
Table S1: Summary of the observations collected intensively and extensively in Vilas county, 
WI. Standard deviation given in parentheses.  

 Intensive dataset Extensive dataset 

Extensive 
dataset with 
aerial surveys 

Number of lakes surveyed 65 38 44 
Number of years surveyed 25 2 2 
Mean number of observations per 
lake 

337 (252) 12.4 (4.06) 13.3 (5.8) 

Mean number of observations per 
year 

374 (479) 235 (84.9) 294 (168) 

Mean number of lakes per year 4.9 (2.6) 21 (7.1) 29.5 (19.1) 
Mean number of observations per 
lake per year 

182 (67.5) 11.2 (1.93) 10.5 (4.7) 
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Table S2: Years surveyed and number of observations for lakes surveyed by both intensively 
and extensively. Oxbow Lake only received 1 on-site visit (3 instantaneous counts) in 2018 for 
administrative reasons.  

Lake name 

Water body 
identification 
code 
(WBIC) 

Lake 
ID 

Years 
surveyed 
intensively 

Number of 
instantaneous 
boat counts 

Years 
surveyed 
extensively 

Number of 
instantaneous 
boat counts 
(on-site 
and/or aerial) 

Birch Lake 2311100 BH 1997 170 2018 10 
    2019 2 

Oxbow Lake 2954800 OB 2008 174 2018 3 
  2018 170 2019 3 

Allequash 
Lake 

2332400 AQ 2010 176 2018 10 
    2019 14 

Black Oak 
Lake 

1630100 BK 2011 168 2018 12 
    2019 3 

Irving Lake 2340900 IV 2001 169 2019 17 
  2011 168   

Little Arbor 
Vitae Lake 

1545300 
 

LV 1996 172 2019 14 

  2007 170   
   2017 168   
White Birch 
Lake 

2340500 
 

WB 2001 170 2019 14 

   2011 168   
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A1: Lake selection process 

Lakes were selected as part of a larger, multi-objective study of lakes in this region. Initially, 

fifty lakes were randomly selected from all Vilas County lakes, 35 of which had lake 

associations, and 15 with no lake associations. All lakes fulfilled the following criteria based on 

WIDNR data:  

- Lakes located completely within Vilas county, not crossing any county or state 

boundaries 

- Have a public launch 

- Contain largemouth bass 

- Not directly connected to other lakes, so limited connectivity for fish and anglers (No 

“chained” lakes) 

- Surface area less than 500 acres 

Distributions of chemical, biological, and morphometric variables across lakes were visually 

checked using histograms comparing distributions of selected lakes with those of all Vilas 

county lakes.  

Feedback from team members was solicited, and their suggestions were incorporated into an 

updated lake list based on availability of new data and consideration of logistical constraints. 

All prior filtering criteria were retained, the maximum lake size was increased to 618 acres (250 

hectares) to accommodate the largest sized lakes we could effectively electrofish. 

The list of selected lakes was sent to colleagues affliated with the WIDNR for consideration of a 

Scientific Collectors Permit. They provided feedback on this list indicating areas for revision. 

Potentially problematic lakes were labeled for the following reasons:  

- All smallmouth rather than largemouth bass 
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- No history of largemouth bass catches in creel data 

- Extremely low fish populations 

- Difficult to access by shock boat 

- Connectivity to other lakes allowing movement of fish and anglers 

- Negative encounters with residents 

Because of this feedback, 19 lakes were removed from the previous selection. These lakes were 

replaced with lakes suggested by WIDNR colleagues. The final lake list therefore contained 22 

lakes that were randomly selected and 19 lakes suggested as replacements because of their 

largemouth bass populations,  

Note: Low density largemouth bass lakes were retained to achieve a continuum of bass densities 

and to retain representative low-bass lakes.  

A2. Model validation 

We needed to establish that, given the same intensive dataset, a generalized linear model-

based estimate of total fishing effort is functionally equivalent to an expanded mean estimate. 

We therefore first compared the total summer fishing effort estimates derived from mean 

expansion to estimates of total summer fishing effort predicted by negative binomial generalized 

linear models (GLMs) fit separately to each lake year.  

An equivalent model-based estimation approach to mean expansion was developed by 

fitting a negative binomial generalized linear model (GLM) separately to each lake year of 

intensive count data with the following parameterization: 

𝐶𝑜𝑢𝑛𝑡 ~ 𝐽𝑢𝑛𝑒 + 𝐽𝑢𝑙𝑦 + 𝐴𝑢𝑔𝑢𝑠𝑡 + 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 +  𝐽𝑢𝑛𝑒 ∗ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 + 𝐽𝑢𝑙𝑦 ∗ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑

+ 𝐴𝑢𝑔𝑢𝑠𝑡 ∗ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 
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Instantaneous fishing effort was predicted by dummy variables categorizing the day as 

belonging to month and weekday strata, as in the mean expansion protocol. By including 

interaction effects between month and weekend, different weekend effects were estimated for 

each month. To estimate total summer fishing effort, counts of fishing effort were then predicted 

for each daylight hour between May 1 and August 31. By calculating the area under the curves of 

the predictions using the trapezoidal rule, we could then estimate total boat hours for the summer 

on a particular lake and year as well as upper and lower 95% prediction intervals. Because both 

sets of estimates were based on the same data and predictors, and because effort on all lakes was 

estimated separately, total summer fishing effort should be comparable as estimated by both 

methods.  

 A more efficient modeling approach may instead fit a quadratic effect of day of year and 

hour of day to estimate seasonal and daily changes in fishing effort. It would use fewer degrees 

of freedom than monthly dummy variables and would therefore be a more effective approach to 

modeling fishing effort using extensive data. Therefore, we additionally fit a negative binomial 

GLM to each lake year of intensive data with the following form:  

𝐶𝑜𝑢𝑛𝑡 ~ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟 + 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ + 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 + 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦 + 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

Each of these model-based estimates were compared to expanded mean estimates by calculating 

an index of relative accuracy (𝐼ோ) and an index of relative precision (𝐼ோ). 

When fit to intensively sampled observations, model-based approaches produced very 

similar results to the standard approach of mean expansion. Negative binomial GLMs were fit to 

each lake-year of intensive observations, and the area under the curve of the predictions 

successfully matched the stratified mean total estimates for summer fishing effort (Figure S2). 

As expected, the model parameterization that more closely matched the stratification of the mean 
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expansion protocol generated nearly identical estimates (Figure S2A). When the monthly dummy 

variables were replaced by a quadratic effects of day of year and hour of day, some minor 

deviations from the mean expansion estimates were evident (Figure S2B). For the seven lakes 

that were surveyed both intensively and extensively, all estimates of total summer fishing effort 

were effectively the same, with some differences in the width of their confidence intervals 

(Figure S3).  

Model-based estimates of total fishing effort that included month effects of a dummy 

variable produced estimates that were equally as accurate and precise relative to the expanded 

mean estimates (Table S3). When models instead included a quadratic effect of day of year, 

estimates of total effort tended to be lower but more precise than those produced by mean 

expansion (Table S4).   

 

 

 

 

 



63 
 

 

Figure S1: Comparison of model-based estimates of total fishing effort with WIDNR stratified mean 
estimates for all lake years. 
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Figure S2: Comparison of total estimated fishing effort and 95% confidence intervals for expanded mean 
estimates and for two functional forms of a GLM. Lakes that were surveyed multiple years by the WIDNR 
have multiple estimates depicted along with their 95% confidence intervals. Confidence intervals are 
wider for GLM estimates, even though they used the same data as the expanded mean estimates. 
Including the quadratic effect somewhat reduces the width of the GLM confidence intervals.  
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Table S3: Indices of relative accuracy (𝐼ோ) and precision (𝐼ோ) for GLM predictions of total 
summer fishing boat hours day effects relative to expanded mean estimates.  

Lake year 
Expanded mean 
total estimate (SD) 

GLM prediction 
(SE) 

𝐼ோ of GLM 
prediction 

𝐼ோ of GLM 
prediction 

AQ 2010 5830.1 (284.5) 5828.8 (1551.5) -0.02 -81.6667 
BH 1997 4253.2 (239.8) 4247.6 (1089.5) -0.13 -78.0189 
BK 2011 2163.5 (111.1) 2142.5 (816.5) -0.98 -86.5234 
IV 2001 3886.6 (163.7) 3783.7 (1294.4) -2.72 -87.6843 
IV 2011 3470.4 (160.2) 3474.3 (1094.4) 0.11 -85.3432 
LV 1996 12035.2 (340.0) 12032.5 (1926.1) -0.02 -82.3508 
LV 2007 8383.6 (341.3) 8389.5 (1777.8) 0.07 -80.7875 
LV 2017 10118.0 (417.6) 10129.9 (2200.6) 0.12 -80.9993 
OB 2008 4610.6 (208.5) 4585.8 (1107.6) -0.54 -81.2776 
OB 2018 3073.9 (169.7) 3077.5 (965.0) 0.12 -82.3964 
WB 2001 1439.2 (76.5) 1439.8 (476.0) 0.05 -83.922 
WB 2011 981.6 (80.4) 996.6 (513.0) 1.50 -84.0815 
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Table S4: Indices of relative accuracy (𝐼ோ) and precision (𝐼ோ) for GLM predictions of total 
summer fishing boat hours with quadratic day and hour of day effects relative to expanded 
mean estimates. 

Lake year 

Expanded mean 
total estimate 
(SD) 

GLM quadratic 
prediction (SE) 

𝐼ோ of GLM 
quadratic 
prediction 

𝐼ோ of GLM 
quadratic 
prediction 

AQ 2010 5830.1 (284.5) 6078.2 (1013.9) 4.08 -70.75 
BH 1997 4253.2 (239.8) 4034.2 (601.2) -5.43 -62.16 
BK 2011 2163.5 (111.1) 2250.7 (523.3) 3.88 -77.91 
IV 2001 3886.6 (163.7) 4088.6 (946.6) 4.94 -81.80 
IV 2011 3470.4 (160.2) 3611.3 (708.7) 3.90 -76.47 
LV 1996 

12035.2 (340.0) 
12351.6 
(1275.7) 2.56 -72.65 

LV 2007 8383.6 (341.3) 8852.3 (1208.4) 5.29 -70.18 
LV 2017 

10118.0 (417.6) 
10568.6 
(1439.5) 4.26 -69.70 

OB 2008 4610.6 (208.5) 4591.0 (679.7) -0.43 -69.46 
OB 2018 3073.9 (169.7) 3054.0 (546.7) -0.65 -69.16 
WB 2001 1439.2 (76.5) 1489.4 (304.0) 3.37 -73.96 
WB 2011 981.6 (80.4) 1006.9 (316.7) 2.51 -73.94 
     
  Mean (SD) 2.36 (3.09) -72.35 (5.04) 
  Mean (SD) 0.02 (0.004) -82.9 (2.71) 
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Table S5: Goodness-of-fit diagnostics for models fit to intensive fishing effort count data as 
additional parameters are added. Values of ΔAIC for alternate specifications for time of day 
are the difference between that model’s AIC and that of model 3. The best-fit model is in bold.  

 Predictors AIC ΔAIC BIC logLik Deviance df 
Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

1 (1|𝐿𝑎𝑘𝑒) 90206  90230 -45100 90200 21873  0.36 

2 + (1|𝑌𝑒𝑎𝑟) 89883 -323 89914 -44937 89875 21872  0.39 

3 + 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

88766 -1440 88822 -44376 88752 21869 0.023 0.43 

Alternate specifications for time of day: 
4 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜

/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘ଶ

+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

88393 -1813 88473 -44186 88373 21866 0.032 0.45 

5 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

88399 -1807 88471 -44190 88381 21867 0.032 0.45 

6 + 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚
+ 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚𝟐

87948 -2258 88020 -43965 87930 21867 0.044 0.46 
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Table S6: Goodness-of-fit diagnostics for models fit to extensive fishing effort count data. 
Values of ΔAIC for alternate specifications for time of day are the difference between that 
model’s AIC and that of model 3. The best-fit model is in bold. 

Model Predictors AIC ΔAIC BIC logLik deviance df 
Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

1 (1|𝐿𝑎𝑘𝑒) 1360.1  1372.5 -677.0 1354.1 467  0.38 

2 + 𝑦𝑒𝑎𝑟 2018 1350.2 -9.9 1366.8 -671.1 1342.2 466 0.035 0.46 

3 + 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

1346.6 -13.5 1375.7 -666.3 1332.6 463 0.047 0.50 

Alternate specifications for time of day: 
4 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜

/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘ଶ

+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

1345.5 -14.6 1387.0 -662.8 1325.5 460 0.055 0.50 

5 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

1344.3 -15.8 1381.7 -663.2 1326.3 461 0.055 0.50 

6 + 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚
+ 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚𝟐

1338.9 -21.2 1376.3 -660.4 1320.9 461 0.065 0.52 
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Table S7: Goodness-of-fit diagnostics for models fit to extensive creel and aerial survey effort 
count data. Values for ΔAIC for alternate specifications of time of day are the difference 
between that model’s AIC and that of model 3. The best-fit model is in bold. 

Model Predictors AIC ΔAIC BIC logLik deviance df 
Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

1 (1|𝐿𝑎𝑘𝑒) 1725.8  1739.0 -859.9 1719.8 588  0.39 
2 + 𝑦𝑒𝑎𝑟 2018 1713.3 -12.5 1730.9 -852.7 1705.3 587 0.021 0.43 
3 + 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟

+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

1708.5 -17.3 1739.2 -847.3 1694.5 584 0.031 0.45 

Alternate specifications for time of day: 
4 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜

/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘ଶ

+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

1708.9 -16.9 1752.7 -844.4 1688.9 581 0.038 0.45 

5 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

1707.0 -18.8 1746.5 -844.5 1689.0 582 0.037 0.45 

6 + 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚
+ 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚𝟐

1700.0 -25.8 1739.4 -841 1682.0 582 0.044 0.46 
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Table S8: Parameter estimates for the best-fit model to intensive fishing effort count data.  

Model 
Random 
effects 

Variance 
of 

random 
intercept 

(SD) Fixed effects 

Fixed effect 
coefficients 
(SE) 

Z 
value P value 

(1|𝐿𝑎𝑘𝑒)
+ (1|𝑦𝑒𝑎𝑟)
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑
+  𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

𝐿𝑎𝑘𝑒 1.06 
(1.03) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.43 (0.14) 3.11 0.0019* 

𝑌𝑒𝑎𝑟 0.065 
(0.25) 

𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟 1.25 (0.086) 14.44 <0.0001* 

  𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ -1.25 (0.086) -14.48 <0.0001* 

   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦 1.42 (0.05) 26.75 <0.0001* 
   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ -1.31 (0.052) -24.94 <0.0001* 
   𝑊𝑒𝑒𝑘𝑒𝑛𝑑 𝑜𝑟 ℎ𝑜𝑙𝑖𝑑𝑎𝑦 0.48 (0.015) 32.63 <0.0001* 
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Table S9: Parameter estimates for the best-fit model to extensive fishing effort count data.  

Model 
Random 
effects 

Variance 
of random 
intercept 
(SD) Fixed effects 

Fixed effect 
coefficients 
(SE) 

Z 
value P value 

(1|𝐿𝑎𝑘𝑒)
+ 𝑦𝑒𝑎𝑟 2018
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑
+  𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

𝐿𝑎𝑘𝑒 1.271 
(1.127) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 -0.41 (0.21) -1.99 0.047* 

  𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟 1.24 (0.78) 1.58 0.11 
  𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ -1.32 (0.77) -1.71 0.087 

   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦 0.55 (0.37) 1.50 0.13 
   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ -0.37 (0.36) -1.04 0.30 
   𝑌𝑒𝑎𝑟 2018 -0.36 (0.10) -3.74 0.0002* 
   𝑊𝑒𝑒𝑘𝑒𝑛𝑑 𝑜𝑟 ℎ𝑜𝑙𝑖𝑑𝑎𝑦 0.27 (0.11) 2.52 0.012* 
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Table S10: Parameter estimates for best-fit model to extensive creel and aerial survey fishing 
effort count data.  

Model 
Random 
effects 

Variance 
of 
random 
intercept 
(SD) Fixed effects 

Fixed effect 
coefficients 
(SE) 

Z 
value P value 

(1|𝐿𝑎𝑘𝑒)
+ 𝑦𝑒𝑎𝑟 2018
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑
+  𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

𝐿𝑎𝑘𝑒 0.98 
(0.98) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 -0.31 (0.17) -1.80 0.072 

  𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟 0.74 (0.69) 1.07 0.28 
  𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ -0.86 (0.68) -1.26 0.21 

   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦 0.48 (0.31) 1.52 0.13 
   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ -0.32 (0.31) -1.06 0.29 
   𝑌𝑒𝑎𝑟 2018 -0.26 (0.07) -3.91 <0.0001* 
   𝑊𝑒𝑒𝑘𝑒𝑛𝑑 𝑜𝑟 ℎ𝑜𝑙𝑖𝑑𝑎𝑦 0.20 

(0.088) 
2.217 0.027* 
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Figure S3: Comparison of total summer fishing effort estimates between traditional mean expansion of 
intensive data (black), and GLMM-based estimates (colors). Lakes that were intensively surveyed 
multiple years by the WDNR have multiple estimates depicted along with their 95% confidence intervals. 
Each dataset was fit to a simple GLMM containing only a lake-specific random intercept. Aerial survey 
data alone produced similar fishing effort estimates as larger datasets.  
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Figure S4: Total fishing effort estimates for out-of-sample lakes obtained by LOGO cross validation. 
Fishing effort estimates labeled “Aerial survey data retained” were obtained by leaving out on-site 
observations from the model fit but retaining three aerial survey observations.  
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Table S11: Random intercept values for all lake year combinations from a GLMM fit to the 
combined intensive and extensive datasets.  

Lake name WBIC 
Random intercept: 
Mean hourly 
fishing effort  

Surface area 
(hectares) 

Years 
surveyed 

Lac Vieux Desert 1631900 12.36316 1626.885 2013, 2006 
Little Saint Germain 
Lake 

1596300 10.61531 393.66 1997, 2015 

Kentuck Lake 716800 10.05069 405.405 1998 

Big Arbor Vitae Lake 
1545600 9.223575 433.35 

2008, 1998, 
2005, 2011, 
2014, 2017 

Twin Lakes 
1623800 8.957309 1162.755 

2007, 1996, 
2017 

Big Saint Germain 
Lake 

1591100 7.693141 656.91 2011 

Catfish Lake 1603700 5.212021 396.09 2000, 2013 
Upper Gresham Lake 2330800 5.078966 146.61 2019, 2015 
Big Lake 2963800 5.056214 315.9 2008 

Little Arbor Vitae 
Lake 

1545300 5.03757 194.4 
2019, 2015, 
1996, 2007, 

2017 
Upper Buckatabon 
Lake 

1621800 4.004153 199.665 2010 

Lost Lake 1593400 3.95955 218.295 2019, 2015 

Trout Lake 

2331600 3.804271 1564.92 

2001, 2004, 
2007, 2010, 
2013, 2016, 

2019 

Plum Lake 

1592400 3.498538 428.085 

1995, 2003, 
2006, 2009, 
2012, 2015, 

2018 
Eagle Lake 1600200 3.280705 232.875 2000, 2013 
Star Lake 1593100 3.073703 493.695 1997, 2005 
Big Muskellunge Lake 1835300 3.013383 363.285 1996 
Palmer Lake 2962900 2.740117 260.82 2019, 2009 

Found Lake 
1593800 2.629966 136.08 

2018, 2019, 
2015 

Allequash Lake 
2332400 2.565629 164.43 

2018, 2019, 
2015, 2010 

Spectacle Lake 717400 2.544978 67.23 2019, 2015 
Clear Lake 2329000 2.415536 208.575 1999, 2004 

Ballard Lake 
2340700 2.318722 203.715 

2019, 2015, 
2001, 2011 
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Crab Lake 2953500 2.209385 368.145 2000, 2002 
Gunlock Lake 1539700 2.20889 106.92 2002 
Lower Buckatabon 
Lake 

1621000 2.201147 153.09 2010 

Island Lake 2334400 2.161185 350.325 1999, 2004 
Scattering Rice Lake 1600300 2.145238 106.515 2000, 2013 
Yellow Birch Lake 1599600 2.097776 77.76 2000, 2013 
Pioneer Lake 1623400 2.026316 173.745 2019, 2015 
Tenderfoot Lake 2962400 1.952217 183.465 2009 
South Turtle Lake 2310200 1.905668 188.73 2010 

Wildcat Lake 
2336800 1.901813 118.665 

2018, 2019, 
2015 

Oxbow Lake 
2954800 1.863795 211.815 

2018, 2019, 
2015, 2008 

Pickerel Lake 1619700 1.854283 109.35 2019, 2015 
Boot Lake 1619100 1.828323 115.83 2019, 2015 
Van Vliet Lake 2956800 1.821236 93.15 2015, 2012 
Voyageur Lake 1603400 1.813109 57.915 2013 

Amik Lake 
2268600 1.799903 57.105 

1998, 2005, 
2018 

Duck Lake 1599900 1.724904 42.93 2000, 2013 

Muskellunge Lake 
1595600 1.70102 116.235 

2018, 2019, 
2015 

Anvil Lake 968800 1.649552 152.685 2019, 2015 
Big Lake 2334700 1.631623 334.935 1995 

Birch Lake 
2311100 1.620301 204.93 

2018, 2019, 
2015, 1997 

Little Spider Lake 
1540400 1.551719 90.315 

2018, 2019, 
2015 

Little John Lake 2332300 1.477845 61.155 2019 
Wild Rice Lake 2329800 1.472612 155.52 1999, 2004 
Rest Lake 2327500 1.471456 265.275 1999, 2004 
Stone Lake 2328800 1.435453 55.89 2004, 1999 
Big Portage Lake 1629500 1.407541 237.33 2006 
Deerskin Lake 1601300 1.401943 121.905 2019, 2015 

Manitowish Lake 
2329400 1.386719 200.88 

2016, 1999, 
2004 

Otter Lake 1600100 1.365467 70.47 2000, 2013 
Harris Lake 2958500 1.312162 216.27 1997, 2019 

Towanda Lake 
1022900 1.2963 56.295 

2018, 2019, 
2015 

Mamie Lake 2964100 1.288534 136.485 2008 
Landing Lake 1630700 1.285178 82.215 2019 
Presque Isle Lake 2956500 1.276282 471.825 2012 
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Fawn Lake 2328900 1.258813 28.35 2004 

Irving Lake 
2340900 1.235148 169.695 

2019, 2015, 
2001, 2011 

Lynx Lake 2954500 1.174211 124.335 1998 
Brandy Lake 1541300 1.144568 45.765 2019, 2015 

Little Crooked Lake 
2335500 1.046359 62.37 

2018, 2019, 
2015 

Arrowhead Lake 
1541500 1.011037 38.88 

2018, 2019, 
2015 

Rainbow Lake 2310800 1.000412 59.94 2019, 2015 
Big Kitten Lake 2336700 0.972799 20.25 2019 

Black Oak Lake 
1630100 0.969767 228.42 

2018, 2019, 
2015, 2011 

Papoose Lake 2328700 0.969182 170.91 1997, 2012 
North Turtle Lake 2310400 0.939383 145.395 2010 

Johnson Lake 
1541100 0.898655 34.425 

2018, 2019, 
2015 

Lake Laura 995200 0.897062 254.34 1998 
Alder Lake 2329600 0.853639 106.92 1999, 2004 
Lynx Lake 1600000 0.821144 12.555 2000, 2013 
Boulder Lake 2338300 0.794834 208.98 1999, 1995 
Spider Lake 2329300 0.781624 112.59 1999, 2004 
Silver Lake 1599800 0.681033 23.085 2019, 2015 
Stormy Lake 1020300 0.671659 211.815 2019, 2015 
Erickson Lake 983600 0.642838 44.55 2019, 2015 
Partridge Lake 2341500 0.587026 95.175 2019, 2015 
Annabelle Lake 2953800 0.577419 78.57 1996, 2019 

Hunter Lake 
991700 0.52965 70.875 

2018, 2019, 
2015 

Snipe Lake 

1018500 0.529036 87.48 

1995, 2000, 
2003, 2006, 
2009, 2012, 
2015, 2018 

Rock Lake 2311700 0.504688 48.6 2010 

White Birch Lake 
2340500 0.486677 45.765 

2019, 2015, 
2001, 2011 

Day Lake 1843500 0.483598 44.55 2019, 2015 
Lone Tree Lake 1000400 0.437012 52.65 2019, 2015 
Street Lake 1884200 0.404973 18.63 2019, 2015 

Camp Lake 
1839100 0.390038 15.39 

2018, 2019, 
2015 

Lake of the Hills 
1620500 0.385468 24.705 

2018, 2019, 
2015 

Little Star Lake 2334300 0.331636 105.3 1999, 2004 
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Sparkling Lake 1881900 0.302415 63.585 1996, 2006 
Dead Pike Lake 2316600 0.279634 125.145 2016, 2005 
Nichols Lake 1870400 0.246555 14.985 2019, 2015 
Lost Canoe Lake 2339800 0.242777 112.995 2015, 1995 
Wabasso Lake 2045000 0.232163 21.06 2018, 2016 
Indian Lake 2764400 0.209596 32.4 2019, 2015 
Whitney Lake 2338100 0.203369 91.53 2019, 2015 
Lake Adelaide 1831700 0.199687 23.085 2019, 2015 

Little Rock Lake 
1862100 0.08288 15.795 

2019, 2015, 
2008 

Averill Lake 2956700 0.075635 27.54 2012 
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Figure S5: Lake-specific random intercepts estimated for all lakes surveyed versus electrofishing catch 
per unit effort of adult walleye.  
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Figure S6: Lake-specific random intercepts estimated for all lakes surveyed versus angling catch per unit 
effort of walleye.  
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Figure S7: Lake-specific random intercepts estimated for all lakes surveyed versus angling catch per unit 
effort of panfish, including yellow perch, bluegill, pumpkinseed, and black crappie.  
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Figure S8: Lake-specific random intercepts estimated for all lakes surveyed versus angling catch per unit 
effort of largemouth bass.  
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Figure S9: Lake-specific random intercepts estimated for all lakes surveyed versus angling catch per unit 
effort of muskellunge.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 


